EXAMENS BLANCS-SESSION D'AVRIL 2007 BACCALAUREAT BLANC

Série: B Coef: 3 Durée: 3 heures

EPREUVE DE MATHEMATIQUES

EXERCICE1.

(5 points)

Une ménagère prépare des bâtons de manioc qu'elle vend au marché du village.

Le coût de production, exprimé en francs CFA, de x bâtons de manioc, est $C(x) = 0.1x^2 + 38x + 4770$ avec $x \in [0;500]$.

On suppose que tous les bâtons de manioc préparés sont vendus au prix de 100 frs.

- 1. Déterminer le coût de production de 300 bâtons de manioc et la recette correspondant à la vente de toute cette production.
- le bénéfice de la ménagère est la différence entre la recette et le coût.
 (Un bénéfice négatif correspond à une perte)
 - a) En utilisant les résultats de la question 1., déterminer les bénéfices de la ménagère pour la production et la vente de ces 300 bâtons de manioc.
 - b) Déterminer, en fonction de x, le bénéfice B(x) effectué par la ménagère lorsqu'elle produit et vent x bâtons de manioc.
 - c) Déterminer la quantité de bâtons de manioc que la ménagère doit produire et vendre pour que son bénéfice soit positif.
 - d) Quel est le bénéfice maximum de la ménagère et le nombre de bâtons de manioc preparés et vendus correspondant.

EXERCICE 2.

(4 points)

On considère le polynôme P définie par : $P(x) = 4x^3 - 8x^2 - 15x + 9$.

- 1. Calculer $P(\sqrt{2})$ et P(3). En déduire une factorisation de P.
- 2. Etudier le signe de P(x).
- 3. En utilisant la question précédente et sans faire de calculs, donner en le justifiant soigneusement, le signe de : P(3,0001) ; P(2,9999) ; P(0,8) ; $P\left(-\frac{3}{4}\right)$.
- 4. Soit Q la fraction rationnelle définie par : $Q(x) = \frac{P(x)}{-1 + x x^2}$

Donner l'ensemble des solutions de l'inéquation $Q(x) \le 0$

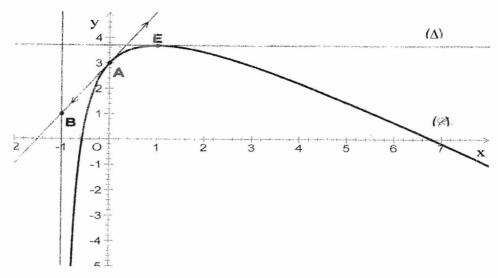
PROBLEME.

(11 points)

Partie A

Le plan est rapporté à un repère orthonormal.

Sur la figure ci-dessous, la courbe (\mathscr{C}) représente une fonction f définie sur l'intervalle $-1;+\infty[$. On a placé les points A(0; 3), B(-1; 1) et E(1; 3+ln2). La droite (AB) est tangente en A à la courbe (\mathscr{C}) et la droite (Δ) est tangente en E à la courbe (\mathscr{C}).



- 1. A Partir des informations ci-dessus, donner :
 - a) Une équation de la droite (AB).
 - b) Les valeurs des nombres f(0), f'(0), f(1) et f'(1).
 - c) Le nombre de solution de l'équation f(x)=1.
 - d) Le tableau de variation de f.
- 2. On admet que la fonction f est définie par : $f(x) = ax + 5 + \frac{b}{x+1} + \ln(x+1)$, où a et b sont des nombres réels. Calculer les nombres a et b à partir de f(0) et f(1).

Partie B

On admet que la fonction f est définie sur -1; $+\infty$ [par : $f(x) = \frac{-x^2 + 4x + 3}{x + 1} + \ln(x + 1)$.

- 1. Déterminer la limite de f en -1. En donner une interprétation graphique.
- 2. a) Montrer que $f'(x) = \frac{-x^2 x + 2}{(x+1)^2}$.
 - b) Etudier le signe de f'(x).
 - c) Le résultat est-il cohérent avec le tableau donnée dans la partie A à la question 1.d) ?
- 3. Montrer que l'équation f(x) = 0 admet une solution unique α sur $]0;+\infty[$. Donner une valeur approchée de cette solution à 10^{-1} près.
- 4. a) Vérifier que $f(x) = 5 x \frac{2}{x+1} + \ln(x+1)$.
 - b) Calculer la dérivée de la fonction g définie sur -1; $+\infty$ [par : $g(x) = -x + (x+1)\ln(x+1)$. En déduire une primitive de la fonction f sur l'intervalle -1; $+\infty$ [.
 - c) Calculer $\int f(x)dx$. En donner une interprétation graphique.

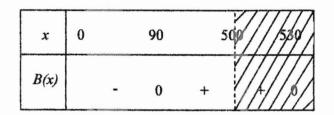
PROPOSITION DE CORRECTION MATHEMATIQUE SERIE B

Exercice 1. (5 points)

 Coût de production de 300 bâtons de manioc : $C(300) = 0.1 \times 300^2 + 38 \times 300 + 4770 \Leftrightarrow$ C(300) = 25170 fis

Recette sur la vente des 300 bâtons de manioc : $R = 300 \times 100 \Leftrightarrow R = 30000 \text{ frs}$

- 2. a. Bénéfice de la ménagère : $B = R - C = 30000 - 25170 \iff B = 4830 \text{ frs}$
 - b. Expression du bénéfice en fonction de x : $B(x) = R(x) - C(x) = 100x - (0.1x^2 + 38x - 4770)$ soit $B(x) = -0.1x^2 + 62x + 4770$
 - c. Etude du signe de B(x): $\Delta = 62^2 - 4(0.1)(4770) = 1936 = 44^2$ $x_1 = 530$ $x_2 = 90$



*Le bénéfice est positif pour $x \in [90;500]$ c-à-d pour une production d'un nombre de manioc compris entre 90 et 500.

d. *Le bénéfice est maximum pour B'(x)=0:

$$B'(x) = -0.2x + 62 \implies -0.2x + 62 = 0$$

 $\Leftrightarrow x = 310$

Le bénéfice est donc maximum pour une production de 310 bâtons de manioc.

*Le bénéfice maximum est de :

$$B(310) = -0.1 \times 310^2 + 62 \times 310 + 4770$$
 soit
 $B(310) = 14380$ frs

Exercice 2. (4 points)

- 1. * $P(\sqrt{2}) = 4(\sqrt{2})^3 8(\sqrt{2})^2 15\sqrt{2} + 9$, soit $P(\sqrt{2}) = -7 7\sqrt{2}$. * $P(3) = 4(3)^3 8(3)^2 15 \times 3 + 9$, soit P(3) = 0.

 - *On sait que P(3) = 0 alors 3 est une racine de P. Méthode de HÛNER :

D'où
$$P(x) = (x-3)(4x^2+4x-3)$$
.
 $\Delta = 4^2-4\times4\times(-3) = 16+48=64=8^2$

$$\begin{vmatrix} x = -\frac{3}{2} \\ x = \frac{1}{2} \end{vmatrix}$$
; done $P(x) = 4(x-3)\left(x-\frac{1}{2}\right)\left(x+\frac{3}{2}\right)$.

2. Signe de P(x):

x	00	$-\frac{3}{2}$	$\frac{1}{2}$		3		+00
x-3	-	-			0	+	
$x-\frac{1}{2}$	-	-	0	+		+	
$x-\frac{3}{2}$	-	0 +		+		+	
P(x)	-	0 +	0	•	0	+	

- 3. * $0,0001 \in [3;+\infty[, alorsP(3,0001) > 0;$
 - $2,9999 \in \left[\frac{1}{2}; 3\right], alorsP(2,9999) < 0$;
 - * $0.8 \in \left[\frac{1}{2}; 3 \right], alorsP(0.8) < 0$;
 - $-\frac{3}{4} \in \left[-\frac{3}{2}; \frac{1}{2} \right]$, alors $P\left(-\frac{3}{4} \right) > 0$.
- 4. L'inéquation est définie si et seulement si $-1+x-x^2 \neq 0$. $\Delta = 1^2 - 4(-1)(-1) = -3 < 0$ donc $(-1+x-x^2)$ est du signe de -1, c-à-d négatif.

Tableau de signe

x		$-\frac{3}{2}$		$\frac{1}{2}$		3	+∞
P(x)	-	0	+	0	-	0	+ -
$-1+x-x^2$	-		-		-		-
Q(x)	+	0	•	0	+	0	•

PROBLEME.

(11 points)

1. a)
$$(AB): y = ax + b$$
.
$$\begin{cases} A(0;3) \Rightarrow a \times 0 + b = 3 \\ B(-1;1) \Rightarrow a(-1) + b = 1 \end{cases} \Rightarrow \begin{cases} -a + b = 1 \\ b = 3 \end{cases} \Leftrightarrow \begin{cases} a = 2 \\ b = 3 \end{cases}, \text{ donc } \underbrace{(AB): y = 2x + 3}.$$

Page :1/2

b) *
$$f(0)=3$$
; * $f'(0)=2$; * $f(1)=3+\ln 2$; * $f'(1)=0$.

c) La droite d'équation y = 1 coupe (C) en deux points

donc l'équation f(x)=1 admet deux (2) solutions.

2.
$$\begin{cases} f(0) = 3 \Rightarrow a \times 0 + 5 + \frac{b}{0+1} + \ln(0+1) = 3 \\ f(1) = 3 + \ln 2 \Rightarrow a + 5 + \frac{b}{2} + \ln 2 = 3 + \ln 2 \end{cases}$$
$$\Leftrightarrow \begin{cases} a + \frac{b}{2} = -2 \\ 5 + b = 3 \end{cases} \Leftrightarrow \begin{cases} a = -1 \\ b = -2 \end{cases}$$
Donc
$$f(x) = -x + 5 - \frac{2}{x+1} + \ln(x+1).$$

Partie B

1. $\lim_{\substack{x \to -1 \\ x > -1}} f(x) = -\infty$ La droite d'équation x = -1 est

asymptote verticale à (C).

2. a)
$$f'(x) = -1 + \frac{2}{(x+1)^2} + \frac{1}{x+1} \Leftrightarrow f'(x) = \frac{-x^2 - x + 2}{(x+1)^2}$$

b)
$$\Delta = (-1)^2 - 4(-1) \times 2 = 1 + 8 = 9 = 3^2$$

$$\begin{vmatrix} x = \frac{1-3}{-2} = 1 \\ x = \frac{1+3}{-2} = -2 \end{vmatrix}, \text{ d'où } f'(x) = \frac{-(x-1)(x+2)}{(x+1)^2}.$$

Sur]-1;+ ∞ [, $(x+1)^2 > 0$, donc f'(x) est du signe [-(x-1)(x+2)]

Signe de la dérivée

x	1	1	+00
f'(x)	+	- 0	-

Pour $x \in]-1;1]$ $f'(x) \ge 0$ et pour $x \in]1;+\infty[, f'(x) < 0]$.

- c) Sur le graphique dans la partie A;
 Pour x ∈]-1;1], f est croissante donc f'(x) ≥ 0.
 Pour x ∈];+∞[, f est strictement décroissante donc f'(x) < 0.
- Sur]-1;+∞[, f est strictement décroissante. Elle ré alise une bijection décroissante sur]-∞;3 + ln 2[. De plus , f change de signe, donc l'équation f(x) = 0 admet une solution unique α ∈]1;+∞[c [0;+∞[α = 6,8]à 10⁻¹ près.

4. a)
$$5 - \frac{2}{x+1} + \ln(x+1) = \frac{(5-x)(x+1)-2}{x+1} + \ln(x+1)$$

= $\frac{-x^2 + 4x + 3}{x+1} + \ln(x+1) = f(x)$.

b) *
$$g'(x) = -1 + \ln(x+1) + \frac{x+1}{x+1} \Leftrightarrow g'(x) = \ln(x+1)$$

*
$$F(x) = 5x - \frac{1}{2}x^2 - 2\ln(x+1) - x + (x+1)\ln(x+1)$$
c)
$$\int_{0}^{1} f(x)dx = \left[5x - \frac{1}{2}x^2 - 2\ln(x+1) - x + (x+1)\ln(x+1)\right]_{0}^{1}$$

$$\Leftrightarrow \int_{0}^{1} f(x)dx = \frac{7}{2} + 4\ln 2.$$

* $\int_0^4 f(x)dx$ représente l'aire du domaine plan délimité par la courbe (C), l'axe des abscisses et les droites d'équation x = 0 et y = 1.