Devoir de Maths Niノ TB
EXERCICE
$1^{\circ}\left(D_{1}\right) \quad 3 x+y=150 \quad \frac{x}{y}|150| 0$

La partie non hachurée orepressante la partie solution.
2° ajTableau des donnés.

	Table		Contraint
Artisan A	x	y	60
Artisan B	x	$2 y$	90
Artisan C	$3 x$	y	150
Beréfice	$20,000 x$	$5000 y$	

(1) D'apriès le tableau des daméés on a le systeme.
$\left\{\begin{array}{l}x \geqslant 0 \\ y \geqslant 0\end{array}\right.$
$x+y \leq 60$ qui est le systime

$$
\left\lvert\, \begin{align*}
& x+2 y \leq 90 \tag{9}\\
& 3 x+y \leq 150
\end{align*}\right.
$$

b) Fenction éconamique bémefie

$$
b=20.000 x+5000 y
$$

3 a) Tracarss le droite Correspondant

$$
\bar{a} \quad b=1500,000 \mathrm{Fcfa} .
$$

$$
1500.000=20,000 x+5000 y
$$

$$
300=4 x+y \quad x|75| \frac{50}{} \quad \begin{array}{ll|l}
x & & 70
\end{array}
$$

La droite (D1) qui correspand $\bar{a} b=1500.000$ fo n'a aucem point commun avec (S) donc ce bénéfice est irréalisatle. b) Tracons la droite ($D_{2}^{\prime \prime}$) poin $b=900.000$ on a $900,000=20.000 x+5000 y$ an

$$
180=4 x+y \begin{array}{l|l|l}
x & 45 & 30 \\
\hline y & 0 & 60
\end{array}
$$

oui car (D_{2}^{1}) a au moins en commun avec la jone solution le point A $(45 ; 0)$ dantles coordamées sont entiers naturels.
c) La droite $\left(\Delta_{m}\right)$ d'ádamée àláiginc (2) maximale, qui maximise passe por le point $M(45 ; 15)$ ce quifait 45 tables ef 15 chaises pour em bénéfice maximal de

$$
\begin{aligned}
& b_{m}=20,000 \times 45+5000 \times 15 \\
& b_{m}=975,000 \mathrm{Fc} \cdot
\end{aligned}
$$

Probleme
10 Par lecture du Tableau de variation on A_{8}

$$
\begin{aligned}
& \text { a) } \left.D_{f}=\right]-\infty ; 1[0] 1 ;+\infty[\\
& \lim _{x \rightarrow-\infty} f(x)=-\infty \quad \lim _{x \rightarrow 1} f(x)=-\infty
\end{aligned}
$$

$$
\lim _{x \rightarrow 1} f(x)=+\infty \quad \stackrel{x \rightarrow-\infty}{x \rightarrow+\infty} \lim _{x \rightarrow+\infty} f(x)=+\infty
$$

b) $f(0)=-3 ; f(2)=1$ $f^{\prime \prime}(0)=0 \quad f^{\prime}(2)=1$
c) (T_{0}) $y=-3$
d) - 3ert le maximum def sun] $-\infty, 1$ [atteint en 0 or $-3<0$ danc $f \angle 0 \mathrm{sur}]-\infty ; 1$ 1 est le minimum de fou] ; $+\infty[$ athenten $2 a$ $2>0$ donc $f>0$ sul $] 1 ;+\infty[1$

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{x^{2}-1}{x}=\lim _{x \rightarrow+\infty} x=+\infty .
$$

$$
\begin{aligned}
& x \rightarrow+\infty \quad x \rightarrow+\infty=\frac{(x-2)(x-1)+1}{x-1} \\
& \text { b) } \begin{aligned}
x-2+1 & =x^{2}-3 x+3
\end{aligned}
\end{aligned}
$$

$$
=\frac{x^{2}-3 x+3}{x-1}
$$

$$
=f(x) d o n c
$$

$$
f(x)=x-2+\frac{1}{x-1} \text { poin } x \neq 1
$$

Rernarque: Dar divizion Eudidioms

$$
\begin{aligned}
& x^{2}-3 x+3 \quad \frac{x-1}{x-2} \\
& -x^{2}+\frac{x}{-2 x+3} \\
& 2 x-2 \\
& f(x)=x-2+\frac{1}{x-1}
\end{aligned}
$$

$$
\text { pour } x \neq 1
$$

$$
\begin{aligned}
& \text { 20 a) } f(x)=\frac{x^{2}-3 x+3}{x-1} \\
& \left.\left.D_{f}=\mid R, j 1\right\}=\right]-\infty ; 1[U] 1 ;+\infty[\\
& \lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{x^{2}}{x \rightarrow-\infty} \lim _{x \rightarrow-\infty} x=-\infty \\
& \begin{array}{l}
x \rightarrow-\infty \quad x \rightarrow-\infty \text { car }\left\{\begin{array}{l}
x \rightarrow-\infty \\
\lim _{x \rightarrow 1} x^{2}-3 x+3=1 \\
\lim _{x \rightarrow 1} x-1
\end{array}\right)=-\infty(x-1<0)
\end{array} \\
& \lim _{x \rightarrow 1} f(x)=+\infty \text { Cay }\left\{\begin{array}{l}
\lim _{x \rightarrow 1} x-1=0(x-1>0) \\
\lim _{x \rightarrow 1} x^{2}-3 x+3=1
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } f(x)-(x-2)=\frac{1}{x-1} \\
& \lim _{x \rightarrow+\infty} \frac{1}{x-1}=\lim _{x \rightarrow-\infty} \frac{1}{x}=0 \\
& \lim _{x \rightarrow+\infty} \frac{1}{x-1}=\lim _{x \rightarrow+\infty} \frac{1}{x}=0
\end{aligned}
$$

done La choite (D) $y=x>2$ est une asymptote oblique $a(c) 0$

$\operatorname{sen}]-\infty, 1[f(x)-y<0 \operatorname{ct}(C)$ est an dessous de (D) sun $] 1 ;+\infty[\quad f(x)-y>0$ et (C) estau dessus de (D).
e) La chaite d'équation $x=1$ est ume as ym pt ate verticale

$$
\bar{a}(c) \cdot
$$

